
September 7, 2005

Dr. George L. Mesina & Joshua M. Hykes

Restructuring RELAP5-3D

2005 RELAP5 International
Users Seminar

Outline

• Purpose
• FORTRAN 90 programming
• Conversion Methodology
• Measurements

Purpose

• Convert interwoven logic flow paths (spaghetti) to
structured blocks of coding

• Improvements (according to computer industry)
gained by structuring the code.
– Easier to read and understand
– Less time required for code development
– Reduced debugging time
– Reduced cost for maintenance

• These will lead to greater robustness

Definition: Structured Programming

– From General Services Administration, Federal
Standard 1037C (Telecom Glossary 2000)

• A technique for organizing and coding computer
programs in which a hierarchy of modules is used,
each having a single entry and a single exit point,
and in which control is passed downward through
the structure with no unconditional branches to
higher levels of the structure.

There are three types of flow control:
• Sequential
• Test (if and case)
• Iteration (loop)

Definition of a “Block of Code”
• A module or block of code is a group of consecutive

lines of code and/or smaller blocks that have:
– A single entry point at the top
– A single exit point
– Execution or control passes downward through

consecutive statements or blocks
• Examples

• The second example has more than one entry point.

Structured
Read (IN, FMT) A
B = A/3.14159265
Write (OUT) B

Unstructured
Read (IN, FMT) A

10 B = A/3.14159265
Write (OUT) B

Flowcharts of Structured Blocks
• Sequential Iteration / Loop

• If / Case

STMT 1

STMT 2

STMT 3

Block 1

Block 2

Block 3

While Body
Block

Until Body
Block

IF

Block T Block F

CASE

Block 1 Block DefaultBlock N

One entry
One exit

Structured Programming
• Essentially, there are:

– No GO TO statements (multiple entry)
– No multiple returns (multiple exit)

• For loops, special structured GO TO statements:
– EXIT – leave loop immediately when condition

occurs and resume execution with statement
after end-of-loop

– CYCLE – leave iteration of loop immediately and
resume execution with loop’s test statement

FOR_STRUCT
• FOR_STRUCT is a commercial software package for

structuring unstructured code
– Applies to FORTRAN IV, FORTRAN 66, and

FORTRAN 77
• Does not work on FORTRAN 90 code.

• Reformats code it restructures, for example:
– Uniform spacing conventions
– Uniform indentation
– Resequencing of line labels

FOR_STRUCT Restructuring

REPLACES WITH
if (.not. condition) go to if (condition) then

Arithmetic IF IF-THEN-ELSE-ELSEIF
Computed GO TO CASE

if (.not.condition) go to 10
Block 1
go to 20

10 Block 2
20 continue

if (condition) then
Block 1

else
Block 2

endif

FOR_STRUCT Restructuring

REPLACES WITH
• Do-loop continue statements end do statement
• Jump to end of iteration cycle statement
• Jump out of loop exit statement
• Backwards go to do while statement *
• Multiple returns in a case statement and
• subroutine a single return

* Only if it is an actual loop.

FOR_STRUCT Limitations

• Some coding is so complex that FOR_STRUCT only
partially restructures it.

• FOR_STRUCT cannot process pre-compiler
directives.
– #IFDEF and #INCLUDE

• FOR_STRUCT cannot process FORTRAN 90 code.

Overcoming FOR_STRUCT limits

• Partially restructuring
– Applying FOR_STRUCT to its own output further

restructures complex code.
– We used 3 iterations.

• Pre-compiler directives
– After applying pre-compiler, any coding that was

removed is not restructured.
– Restructure file several times with different flags

active.
– Recombine carefully.

Methodology: Complexity Control

• Files vary in complexity with:
– Size of file
– The number of different IFDEFS
– The number of IFDEF branches
– Nesting of IFDEFS

• Sorted files according number of IFDEFS and then
according to size.
– Process files from least complexity to greatest
– Develop means to overcome each difficulty as it

occurs.

Methodology: Work in stages

• Stage 1 – Prepare file
– Prepare to apply CPP and FOR_STRUCT.

• Stage 2 – Process file
– Apply CPP and FOR_STRUCT

• Stage 3 – Post-processing file
– Essentially, undo the preparations

Stage 1: Preparing a file

• Replace F90 derived-type variables with dummy
variables.

• Associate an index number with each IFDEF.
• Make “commented copies” of IFDEFS and

INCLUDES.
• Append DEFINE heading(s) to file, usually creating

multiple files.
– Combinations of DEFINEs depend on:

• Nesting
• Mutually exclusive options

Preparing a file: Example

ix = vlm(mi)%vctrls
#ifndef int32

iip = ishft(is23(ix),-30)
#endif
c Set indexes in tables

11 if (s(ix) .ge. a(iip)) go to 10
iip = iip - 1
go to 11

10 continue

ix = dummy1avctrls
Converted #ifndef 4.0.0.0 i@nt32
#ifndef int32

iip = ishft(is23(ix),-30)
#endif
C~LIT_ON
Converted #endif 4.0.0.0
C~LIT_OFF
c Set indexes in tables

11 if (s(ix) .ge. a(iip)) go to 10
iip = iip - 1
go to 11

10 continue

Original File Prepared File

Stage 2: Processing a file

• Preprocess the file(s) with CPP
– Expands INCLUDES
– Eliminates some conditional code

• Run FOR_STRUCT iteratively on each file.
• Troubleshoot errors by manually changing the input

or output file.
– Usually involves moving an ENDIF into or out of

an IFDEF block

Processing a file: Example

ix = dummy1avctrls
Converted #ifndef 4.0.0.0 i@nt32
C~LIT_ON
Converted #endif 4.0.0.0
C~LIT_OFF
c Set indexes in tables

11 if (s(ix) .ge. a(iip)) go to 10
iip = iip - 1
go to 11

10 continue

After CPP After FOR_STRUCT
ix = dummy1vctrls

Converted #ifndef 4.0.0.0 i@nt32
C~LIT_ON
Converted #endif 4.0.0.0
C~LIT_OFF
C Set indexes in tables

do while (s(ix).lt.a(iip))
iip = iip - 1

end do

Note, the code protected
with “#ifndef int32”
was eliminated by CPP.

Methodology: Post Processing

• Substitute F90 variables for dummy variables.
• Combine files into one complete file.

– Use IFDEF indexes to match blocks of code.
– Verify the number of IFDEFs did not change.

• Uncomment the commented copies of IFDEFS and
INCLUDES.

• Delete the included files.
• Fix the undesirable formatting details that

FOR_STRUCT predictably produces.
• Run small test set; ensure output remains same.

Post Processing a file: Example
After Post Processing

ix = dummmy1vctrls
Converted #ifndef 4.0.0.0 i@nt32
C~LIT_ON
Converted #endif 4.0.0.0
C~LIT_OFF
C Set indexes in tables

do while (s(ix).lt.a(iip))
iip = iip - 1

end do

After FOR_STRUCT
ix = vlm(mi)%vctrls

#ifndef int32
iip = ishft(is23(ix),-30)

#endif
c Set indexes tables

do while (s(ix).lt.a(iip))
iip = iip - 1

end do

Results

• 443 files in the RELAP subdirectory restructured.
– 53 files need no restructuring.

• For the 443 restructured files:
– Avg # GOTOs/subroutine

• Before: 10.6, After: 5.4
– Max # GOTOs in any subroutine

• Before: 213, After: 146
– Max # labels in any subroutine

• Before: 210, After: 48

	Restructuring RELAP5-3D
	Outline
	Purpose
	Definition: Structured Programming
	Definition of a “Block of Code”
	Flowcharts of Structured Blocks
	Structured Programming
	FOR_STRUCT
	FOR_STRUCT Restructuring
	FOR_STRUCT Restructuring
	FOR_STRUCT Limitations
	Overcoming FOR_STRUCT limits
	Methodology: Complexity Control
	Methodology: Work in stages
	Stage 1: Preparing a file
	Preparing a file: Example
	Stage 2: Processing a file
	Processing a file: Example
	Methodology: Post Processing
	Post Processing a file: Example
	Results

